On the basis property of Riesz means of spectral expansions corresponding to a nonself-adjoint ordinary differential operator of higher order: I
Differencialʹnye uravneniâ, Tome 36 (2000) no. 3, pp. 301-311
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_2000_36_3_a1,
author = {A. M. Zuev},
title = {On the basis property of {Riesz} means of spectral expansions corresponding to a nonself-adjoint ordinary differential operator of higher order: {I}},
journal = {Differencialʹnye uravneni\^a},
pages = {301--311},
year = {2000},
volume = {36},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2000_36_3_a1/}
}
TY - JOUR AU - A. M. Zuev TI - On the basis property of Riesz means of spectral expansions corresponding to a nonself-adjoint ordinary differential operator of higher order: I JO - Differencialʹnye uravneniâ PY - 2000 SP - 301 EP - 311 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/DE_2000_36_3_a1/ LA - ru ID - DE_2000_36_3_a1 ER -
%0 Journal Article %A A. M. Zuev %T On the basis property of Riesz means of spectral expansions corresponding to a nonself-adjoint ordinary differential operator of higher order: I %J Differencialʹnye uravneniâ %D 2000 %P 301-311 %V 36 %N 3 %U http://geodesic.mathdoc.fr/item/DE_2000_36_3_a1/ %G ru %F DE_2000_36_3_a1
A. M. Zuev. On the basis property of Riesz means of spectral expansions corresponding to a nonself-adjoint ordinary differential operator of higher order: I. Differencialʹnye uravneniâ, Tome 36 (2000) no. 3, pp. 301-311. http://geodesic.mathdoc.fr/item/DE_2000_36_3_a1/