Stability conditions for the inverted pendulum whose suspension point performs decaying vibrations of a special form
Differencialʹnye uravneniâ, Tome 36 (2000) no. 2, pp. 152-157
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_2000_36_2_a1,
author = {V. V. Ganina and Yu. S. Kolesov},
title = {Stability conditions for the inverted pendulum whose suspension point performs decaying vibrations of a special form},
journal = {Differencialʹnye uravneni\^a},
pages = {152--157},
year = {2000},
volume = {36},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2000_36_2_a1/}
}
TY - JOUR AU - V. V. Ganina AU - Yu. S. Kolesov TI - Stability conditions for the inverted pendulum whose suspension point performs decaying vibrations of a special form JO - Differencialʹnye uravneniâ PY - 2000 SP - 152 EP - 157 VL - 36 IS - 2 UR - http://geodesic.mathdoc.fr/item/DE_2000_36_2_a1/ LA - ru ID - DE_2000_36_2_a1 ER -
%0 Journal Article %A V. V. Ganina %A Yu. S. Kolesov %T Stability conditions for the inverted pendulum whose suspension point performs decaying vibrations of a special form %J Differencialʹnye uravneniâ %D 2000 %P 152-157 %V 36 %N 2 %U http://geodesic.mathdoc.fr/item/DE_2000_36_2_a1/ %G ru %F DE_2000_36_2_a1
V. V. Ganina; Yu. S. Kolesov. Stability conditions for the inverted pendulum whose suspension point performs decaying vibrations of a special form. Differencialʹnye uravneniâ, Tome 36 (2000) no. 2, pp. 152-157. http://geodesic.mathdoc.fr/item/DE_2000_36_2_a1/