An infinite-dimensional analogue of the theorem on a removable singular point of a harmonic function
Differencialʹnye uravneniâ, Tome 35 (1999) no. 3, pp. 426-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1999_35_3_a20,
     author = {M. V. Tuvaev},
     title = {An infinite-dimensional analogue of the theorem on a removable singular point of a harmonic function},
     journal = {Differencialʹnye uravneni\^a},
     pages = {426--427},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1999_35_3_a20/}
}
TY  - JOUR
AU  - M. V. Tuvaev
TI  - An infinite-dimensional analogue of the theorem on a removable singular point of a harmonic function
JO  - Differencialʹnye uravneniâ
PY  - 1999
SP  - 426
EP  - 427
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1999_35_3_a20/
LA  - ru
ID  - DE_1999_35_3_a20
ER  - 
%0 Journal Article
%A M. V. Tuvaev
%T An infinite-dimensional analogue of the theorem on a removable singular point of a harmonic function
%J Differencialʹnye uravneniâ
%D 1999
%P 426-427
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1999_35_3_a20/
%G ru
%F DE_1999_35_3_a20
M. V. Tuvaev. An infinite-dimensional analogue of the theorem on a removable singular point of a harmonic function. Differencialʹnye uravneniâ, Tome 35 (1999) no. 3, pp. 426-427. http://geodesic.mathdoc.fr/item/DE_1999_35_3_a20/