An estimate for the spectral function of a selfadjoint extension in $\mathbb R^N$ of the Schrödinger operator with a potential satisfying the strengthened Stummel condition
Differencialʹnye uravneniâ, Tome 35 (1999) no. 2, pp. 188-199
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1999_35_2_a2,
author = {V. A. Il'in},
title = {An estimate for the spectral function of a selfadjoint extension in $\mathbb R^N$ of the {Schr\"odinger} operator with a potential satisfying the strengthened {Stummel} condition},
journal = {Differencialʹnye uravneni\^a},
pages = {188--199},
year = {1999},
volume = {35},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1999_35_2_a2/}
}
TY - JOUR AU - V. A. Il'in TI - An estimate for the spectral function of a selfadjoint extension in $\mathbb R^N$ of the Schrödinger operator with a potential satisfying the strengthened Stummel condition JO - Differencialʹnye uravneniâ PY - 1999 SP - 188 EP - 199 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/DE_1999_35_2_a2/ LA - ru ID - DE_1999_35_2_a2 ER -
%0 Journal Article %A V. A. Il'in %T An estimate for the spectral function of a selfadjoint extension in $\mathbb R^N$ of the Schrödinger operator with a potential satisfying the strengthened Stummel condition %J Differencialʹnye uravneniâ %D 1999 %P 188-199 %V 35 %N 2 %U http://geodesic.mathdoc.fr/item/DE_1999_35_2_a2/ %G ru %F DE_1999_35_2_a2
V. A. Il'in. An estimate for the spectral function of a selfadjoint extension in $\mathbb R^N$ of the Schrödinger operator with a potential satisfying the strengthened Stummel condition. Differencialʹnye uravneniâ, Tome 35 (1999) no. 2, pp. 188-199. http://geodesic.mathdoc.fr/item/DE_1999_35_2_a2/