A mixture of the Leray–Schauder and the Poincaré–Andronov methods in the problem of periodic solutions of ordinary differential equations
Differencialʹnye uravneniâ, Tome 35 (1999) no. 12, pp. 1709-1711
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1999_35_12_a14,
author = {V. V. Filippov},
title = {A mixture of the {Leray{\textendash}Schauder} and the {Poincar\'e{\textendash}Andronov} methods in the problem of periodic solutions of ordinary differential equations},
journal = {Differencialʹnye uravneni\^a},
pages = {1709--1711},
year = {1999},
volume = {35},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1999_35_12_a14/}
}
TY - JOUR AU - V. V. Filippov TI - A mixture of the Leray–Schauder and the Poincaré–Andronov methods in the problem of periodic solutions of ordinary differential equations JO - Differencialʹnye uravneniâ PY - 1999 SP - 1709 EP - 1711 VL - 35 IS - 12 UR - http://geodesic.mathdoc.fr/item/DE_1999_35_12_a14/ LA - ru ID - DE_1999_35_12_a14 ER -
%0 Journal Article %A V. V. Filippov %T A mixture of the Leray–Schauder and the Poincaré–Andronov methods in the problem of periodic solutions of ordinary differential equations %J Differencialʹnye uravneniâ %D 1999 %P 1709-1711 %V 35 %N 12 %U http://geodesic.mathdoc.fr/item/DE_1999_35_12_a14/ %G ru %F DE_1999_35_12_a14
V. V. Filippov. A mixture of the Leray–Schauder and the Poincaré–Andronov methods in the problem of periodic solutions of ordinary differential equations. Differencialʹnye uravneniâ, Tome 35 (1999) no. 12, pp. 1709-1711. http://geodesic.mathdoc.fr/item/DE_1999_35_12_a14/