Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1998_34_9_a2, author = {G. Leoni}, title = {Classification of positive solutions of the problem $\operatorname{div}(|\nabla u|^{p-2}\nabla u)+x\nabla(u^q)+\alpha u^q=0$ in $\mathbb R^n$}, journal = {Differencialʹnye uravneni\^a}, pages = {1170--1178}, publisher = {mathdoc}, volume = {34}, number = {9}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1998_34_9_a2/} }
TY - JOUR AU - G. Leoni TI - Classification of positive solutions of the problem $\operatorname{div}(|\nabla u|^{p-2}\nabla u)+x\nabla(u^q)+\alpha u^q=0$ in $\mathbb R^n$ JO - Differencialʹnye uravneniâ PY - 1998 SP - 1170 EP - 1178 VL - 34 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1998_34_9_a2/ LA - ru ID - DE_1998_34_9_a2 ER -
%0 Journal Article %A G. Leoni %T Classification of positive solutions of the problem $\operatorname{div}(|\nabla u|^{p-2}\nabla u)+x\nabla(u^q)+\alpha u^q=0$ in $\mathbb R^n$ %J Differencialʹnye uravneniâ %D 1998 %P 1170-1178 %V 34 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1998_34_9_a2/ %G ru %F DE_1998_34_9_a2
G. Leoni. Classification of positive solutions of the problem $\operatorname{div}(|\nabla u|^{p-2}\nabla u)+x\nabla(u^q)+\alpha u^q=0$ in $\mathbb R^n$. Differencialʹnye uravneniâ, Tome 34 (1998) no. 9, pp. 1170-1178. http://geodesic.mathdoc.fr/item/DE_1998_34_9_a2/