A degenerate Cauchy problem for a second-order equation. A well-posedness criterion
Differencialʹnye uravneniâ, Tome 34 (1998) no. 8, pp. 1131-1133.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1998_34_8_a15,
     author = {U. A. Anufrieva},
     title = {A degenerate {Cauchy} problem for a second-order equation. {A} well-posedness criterion},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1131--1133},
     publisher = {mathdoc},
     volume = {34},
     number = {8},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1998_34_8_a15/}
}
TY  - JOUR
AU  - U. A. Anufrieva
TI  - A degenerate Cauchy problem for a second-order equation. A well-posedness criterion
JO  - Differencialʹnye uravneniâ
PY  - 1998
SP  - 1131
EP  - 1133
VL  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1998_34_8_a15/
LA  - ru
ID  - DE_1998_34_8_a15
ER  - 
%0 Journal Article
%A U. A. Anufrieva
%T A degenerate Cauchy problem for a second-order equation. A well-posedness criterion
%J Differencialʹnye uravneniâ
%D 1998
%P 1131-1133
%V 34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1998_34_8_a15/
%G ru
%F DE_1998_34_8_a15
U. A. Anufrieva. A degenerate Cauchy problem for a second-order equation. A well-posedness criterion. Differencialʹnye uravneniâ, Tome 34 (1998) no. 8, pp. 1131-1133. http://geodesic.mathdoc.fr/item/DE_1998_34_8_a15/