An estimate for the spectral function of a selfadjoint extension in $\mathbb R^2$ of the Schrödinger operator with a potential satisfying the Stummel condition
Differencialʹnye uravneniâ, Tome 34 (1998) no. 5, pp. 638-646
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1998_34_5_a5,
author = {V. A. Il'in},
title = {An estimate for the spectral function of a selfadjoint extension in $\mathbb R^2$ of the {Schr\"odinger} operator with a potential satisfying the {Stummel} condition},
journal = {Differencialʹnye uravneni\^a},
pages = {638--646},
year = {1998},
volume = {34},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1998_34_5_a5/}
}
TY - JOUR AU - V. A. Il'in TI - An estimate for the spectral function of a selfadjoint extension in $\mathbb R^2$ of the Schrödinger operator with a potential satisfying the Stummel condition JO - Differencialʹnye uravneniâ PY - 1998 SP - 638 EP - 646 VL - 34 IS - 5 UR - http://geodesic.mathdoc.fr/item/DE_1998_34_5_a5/ LA - ru ID - DE_1998_34_5_a5 ER -
%0 Journal Article %A V. A. Il'in %T An estimate for the spectral function of a selfadjoint extension in $\mathbb R^2$ of the Schrödinger operator with a potential satisfying the Stummel condition %J Differencialʹnye uravneniâ %D 1998 %P 638-646 %V 34 %N 5 %U http://geodesic.mathdoc.fr/item/DE_1998_34_5_a5/ %G ru %F DE_1998_34_5_a5
V. A. Il'in. An estimate for the spectral function of a selfadjoint extension in $\mathbb R^2$ of the Schrödinger operator with a potential satisfying the Stummel condition. Differencialʹnye uravneniâ, Tome 34 (1998) no. 5, pp. 638-646. http://geodesic.mathdoc.fr/item/DE_1998_34_5_a5/