A proof of the existence of an infinitely continuable solution of the Cauchy problem for a class of second-order differential equations in the space of complex-analytic functions
Differencialʹnye uravneniâ, Tome 34 (1998) no. 3, pp. 370-374
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1998_34_3_a11,
author = {M. V. Korovina},
title = {A proof of the existence of an infinitely continuable solution of the {Cauchy} problem for a class of second-order differential equations in the space of complex-analytic functions},
journal = {Differencialʹnye uravneni\^a},
pages = {370--374},
year = {1998},
volume = {34},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1998_34_3_a11/}
}
TY - JOUR AU - M. V. Korovina TI - A proof of the existence of an infinitely continuable solution of the Cauchy problem for a class of second-order differential equations in the space of complex-analytic functions JO - Differencialʹnye uravneniâ PY - 1998 SP - 370 EP - 374 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/DE_1998_34_3_a11/ LA - ru ID - DE_1998_34_3_a11 ER -
%0 Journal Article %A M. V. Korovina %T A proof of the existence of an infinitely continuable solution of the Cauchy problem for a class of second-order differential equations in the space of complex-analytic functions %J Differencialʹnye uravneniâ %D 1998 %P 370-374 %V 34 %N 3 %U http://geodesic.mathdoc.fr/item/DE_1998_34_3_a11/ %G ru %F DE_1998_34_3_a11
M. V. Korovina. A proof of the existence of an infinitely continuable solution of the Cauchy problem for a class of second-order differential equations in the space of complex-analytic functions. Differencialʹnye uravneniâ, Tome 34 (1998) no. 3, pp. 370-374. http://geodesic.mathdoc.fr/item/DE_1998_34_3_a11/