On a connection between the concepts of a $C$-system and an $L_1$-system in the theory of affine control systems
Differencialʹnye uravneniâ, Tome 34 (1998) no. 11, pp. 1471-1477.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1998_34_11_a4,
     author = {V. I. Elkin and D. G. Ivashko},
     title = {On a connection between the concepts of a $C$-system and an $L_1$-system in the theory of affine control systems},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1471--1477},
     publisher = {mathdoc},
     volume = {34},
     number = {11},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1998_34_11_a4/}
}
TY  - JOUR
AU  - V. I. Elkin
AU  - D. G. Ivashko
TI  - On a connection between the concepts of a $C$-system and an $L_1$-system in the theory of affine control systems
JO  - Differencialʹnye uravneniâ
PY  - 1998
SP  - 1471
EP  - 1477
VL  - 34
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1998_34_11_a4/
LA  - ru
ID  - DE_1998_34_11_a4
ER  - 
%0 Journal Article
%A V. I. Elkin
%A D. G. Ivashko
%T On a connection between the concepts of a $C$-system and an $L_1$-system in the theory of affine control systems
%J Differencialʹnye uravneniâ
%D 1998
%P 1471-1477
%V 34
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1998_34_11_a4/
%G ru
%F DE_1998_34_11_a4
V. I. Elkin; D. G. Ivashko. On a connection between the concepts of a $C$-system and an $L_1$-system in the theory of affine control systems. Differencialʹnye uravneniâ, Tome 34 (1998) no. 11, pp. 1471-1477. http://geodesic.mathdoc.fr/item/DE_1998_34_11_a4/