An analogue of the Riesz--Fischer theorem for the Fourier transforms corresponding to a one-dimensional Schr\"odinger operator with measurable and bounded potential
Differencialʹnye uravneniâ, Tome 33 (1997) no. 8, pp. 1017-1022.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1997_33_8_a1,
     author = {V. V. Gavrilov},
     title = {An analogue of the {Riesz--Fischer} theorem for the {Fourier} transforms corresponding to a one-dimensional {Schr\"odinger} operator with measurable and bounded potential},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1017--1022},
     publisher = {mathdoc},
     volume = {33},
     number = {8},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1997_33_8_a1/}
}
TY  - JOUR
AU  - V. V. Gavrilov
TI  - An analogue of the Riesz--Fischer theorem for the Fourier transforms corresponding to a one-dimensional Schr\"odinger operator with measurable and bounded potential
JO  - Differencialʹnye uravneniâ
PY  - 1997
SP  - 1017
EP  - 1022
VL  - 33
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1997_33_8_a1/
LA  - ru
ID  - DE_1997_33_8_a1
ER  - 
%0 Journal Article
%A V. V. Gavrilov
%T An analogue of the Riesz--Fischer theorem for the Fourier transforms corresponding to a one-dimensional Schr\"odinger operator with measurable and bounded potential
%J Differencialʹnye uravneniâ
%D 1997
%P 1017-1022
%V 33
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1997_33_8_a1/
%G ru
%F DE_1997_33_8_a1
V. V. Gavrilov. An analogue of the Riesz--Fischer theorem for the Fourier transforms corresponding to a one-dimensional Schr\"odinger operator with measurable and bounded potential. Differencialʹnye uravneniâ, Tome 33 (1997) no. 8, pp. 1017-1022. http://geodesic.mathdoc.fr/item/DE_1997_33_8_a1/