On a Riemann–Hilbert problem for a vector that is holomorphic in an infinite cylinder
Differencialʹnye uravneniâ, Tome 33 (1997) no. 4, pp. 500-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{DE_1997_33_4_a9,
     author = {A. Abdushukurov},
     title = {On a {Riemann{\textendash}Hilbert} problem for a vector that is holomorphic in an infinite cylinder},
     journal = {Differencialʹnye uravneni\^a},
     pages = {500--505},
     year = {1997},
     volume = {33},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1997_33_4_a9/}
}
TY  - JOUR
AU  - A. Abdushukurov
TI  - On a Riemann–Hilbert problem for a vector that is holomorphic in an infinite cylinder
JO  - Differencialʹnye uravneniâ
PY  - 1997
SP  - 500
EP  - 505
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DE_1997_33_4_a9/
LA  - ru
ID  - DE_1997_33_4_a9
ER  - 
%0 Journal Article
%A A. Abdushukurov
%T On a Riemann–Hilbert problem for a vector that is holomorphic in an infinite cylinder
%J Differencialʹnye uravneniâ
%D 1997
%P 500-505
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/DE_1997_33_4_a9/
%G ru
%F DE_1997_33_4_a9
A. Abdushukurov. On a Riemann–Hilbert problem for a vector that is holomorphic in an infinite cylinder. Differencialʹnye uravneniâ, Tome 33 (1997) no. 4, pp. 500-505. http://geodesic.mathdoc.fr/item/DE_1997_33_4_a9/