An order exact estimate uniform in $\mathbf R^N$ for $N=2$ and $N=3$, for the squares of fundamental functions of a selfadjoint extension in $\mathbf R^N$ of the Schr\"odinger operator with a potential satisfying Kato's condition
Differencialʹnye uravneniâ, Tome 32 (1996) no. 3, pp. 357-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1996_32_3_a11,
     author = {V. A. Il'in and E. I. Moiseev},
     title = {An order exact estimate uniform in $\mathbf R^N$ for $N=2$ and $N=3$, for the squares of fundamental functions of a selfadjoint extension in $\mathbf R^N$ of the {Schr\"odinger} operator with a potential satisfying {Kato's} condition},
     journal = {Differencialʹnye uravneni\^a},
     pages = {357--374},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1996_32_3_a11/}
}
TY  - JOUR
AU  - V. A. Il'in
AU  - E. I. Moiseev
TI  - An order exact estimate uniform in $\mathbf R^N$ for $N=2$ and $N=3$, for the squares of fundamental functions of a selfadjoint extension in $\mathbf R^N$ of the Schr\"odinger operator with a potential satisfying Kato's condition
JO  - Differencialʹnye uravneniâ
PY  - 1996
SP  - 357
EP  - 374
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1996_32_3_a11/
LA  - ru
ID  - DE_1996_32_3_a11
ER  - 
%0 Journal Article
%A V. A. Il'in
%A E. I. Moiseev
%T An order exact estimate uniform in $\mathbf R^N$ for $N=2$ and $N=3$, for the squares of fundamental functions of a selfadjoint extension in $\mathbf R^N$ of the Schr\"odinger operator with a potential satisfying Kato's condition
%J Differencialʹnye uravneniâ
%D 1996
%P 357-374
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1996_32_3_a11/
%G ru
%F DE_1996_32_3_a11
V. A. Il'in; E. I. Moiseev. An order exact estimate uniform in $\mathbf R^N$ for $N=2$ and $N=3$, for the squares of fundamental functions of a selfadjoint extension in $\mathbf R^N$ of the Schr\"odinger operator with a potential satisfying Kato's condition. Differencialʹnye uravneniâ, Tome 32 (1996) no. 3, pp. 357-374. http://geodesic.mathdoc.fr/item/DE_1996_32_3_a11/