Solution of the a posteriori estimation problem in fuzzy observation systems by means of a fuzzy preference relation
Differencialʹnye uravneniâ, Tome 32 (1996) no. 2, pp. 232-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1996_32_2_a11,
     author = {S. K. Korzhenevich},
     title = {Solution of the a posteriori estimation problem in fuzzy observation systems by means of a fuzzy preference relation},
     journal = {Differencialʹnye uravneni\^a},
     pages = {232--237},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1996_32_2_a11/}
}
TY  - JOUR
AU  - S. K. Korzhenevich
TI  - Solution of the a posteriori estimation problem in fuzzy observation systems by means of a fuzzy preference relation
JO  - Differencialʹnye uravneniâ
PY  - 1996
SP  - 232
EP  - 237
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1996_32_2_a11/
LA  - ru
ID  - DE_1996_32_2_a11
ER  - 
%0 Journal Article
%A S. K. Korzhenevich
%T Solution of the a posteriori estimation problem in fuzzy observation systems by means of a fuzzy preference relation
%J Differencialʹnye uravneniâ
%D 1996
%P 232-237
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1996_32_2_a11/
%G ru
%F DE_1996_32_2_a11
S. K. Korzhenevich. Solution of the a posteriori estimation problem in fuzzy observation systems by means of a fuzzy preference relation. Differencialʹnye uravneniâ, Tome 32 (1996) no. 2, pp. 232-237. http://geodesic.mathdoc.fr/item/DE_1996_32_2_a11/