Reduction of nonlinear dynamical systems that have a continuous symmetry group
Differencialʹnye uravneniâ, Tome 32 (1996) no. 11, pp. 1566-1568.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1996_32_11_a19,
     author = {V. I. Salyga and M. N. Zaripov},
     title = {Reduction of nonlinear dynamical systems that have a continuous symmetry group},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1566--1568},
     publisher = {mathdoc},
     volume = {32},
     number = {11},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1996_32_11_a19/}
}
TY  - JOUR
AU  - V. I. Salyga
AU  - M. N. Zaripov
TI  - Reduction of nonlinear dynamical systems that have a continuous symmetry group
JO  - Differencialʹnye uravneniâ
PY  - 1996
SP  - 1566
EP  - 1568
VL  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1996_32_11_a19/
LA  - ru
ID  - DE_1996_32_11_a19
ER  - 
%0 Journal Article
%A V. I. Salyga
%A M. N. Zaripov
%T Reduction of nonlinear dynamical systems that have a continuous symmetry group
%J Differencialʹnye uravneniâ
%D 1996
%P 1566-1568
%V 32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1996_32_11_a19/
%G ru
%F DE_1996_32_11_a19
V. I. Salyga; M. N. Zaripov. Reduction of nonlinear dynamical systems that have a continuous symmetry group. Differencialʹnye uravneniâ, Tome 32 (1996) no. 11, pp. 1566-1568. http://geodesic.mathdoc.fr/item/DE_1996_32_11_a19/