Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1995_31_7_a12, author = {R. Z. Dautov}, title = {A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain}, journal = {Differencialʹnye uravneni\^a}, pages = {1202--1210}, publisher = {mathdoc}, volume = {31}, number = {7}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/} }
TY - JOUR AU - R. Z. Dautov TI - A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain JO - Differencialʹnye uravneniâ PY - 1995 SP - 1202 EP - 1210 VL - 31 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/ LA - ru ID - DE_1995_31_7_a12 ER -
%0 Journal Article %A R. Z. Dautov %T A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain %J Differencialʹnye uravneniâ %D 1995 %P 1202-1210 %V 31 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/ %G ru %F DE_1995_31_7_a12
R. Z. Dautov. A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain. Differencialʹnye uravneniâ, Tome 31 (1995) no. 7, pp. 1202-1210. http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/