A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain
Differencialʹnye uravneniâ, Tome 31 (1995) no. 7, pp. 1202-1210.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1995_31_7_a12,
     author = {R. Z. Dautov},
     title = {A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1202--1210},
     publisher = {mathdoc},
     volume = {31},
     number = {7},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/}
}
TY  - JOUR
AU  - R. Z. Dautov
TI  - A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain
JO  - Differencialʹnye uravneniâ
PY  - 1995
SP  - 1202
EP  - 1210
VL  - 31
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/
LA  - ru
ID  - DE_1995_31_7_a12
ER  - 
%0 Journal Article
%A R. Z. Dautov
%T A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain
%J Differencialʹnye uravneniâ
%D 1995
%P 1202-1210
%V 31
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/
%G ru
%F DE_1995_31_7_a12
R. Z. Dautov. A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain. Differencialʹnye uravneniâ, Tome 31 (1995) no. 7, pp. 1202-1210. http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/