A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain
Differencialʹnye uravneniâ, Tome 31 (1995) no. 7, pp. 1202-1210
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1995_31_7_a12,
author = {R. Z. Dautov},
title = {A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain},
journal = {Differencialʹnye uravneni\^a},
pages = {1202--1210},
year = {1995},
volume = {31},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/}
}
TY - JOUR AU - R. Z. Dautov TI - A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain JO - Differencialʹnye uravneniâ PY - 1995 SP - 1202 EP - 1210 VL - 31 IS - 7 UR - http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/ LA - ru ID - DE_1995_31_7_a12 ER -
%0 Journal Article %A R. Z. Dautov %T A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain %J Differencialʹnye uravneniâ %D 1995 %P 1202-1210 %V 31 %N 7 %U http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/ %G ru %F DE_1995_31_7_a12
R. Z. Dautov. A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain. Differencialʹnye uravneniâ, Tome 31 (1995) no. 7, pp. 1202-1210. http://geodesic.mathdoc.fr/item/DE_1995_31_7_a12/