A formula for the rotation number of a first-order equation whose right-hand side is quasiperiodic in time
Differencialʹnye uravneniâ, Tome 31 (1995) no. 1, pp. 158-159
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1995_31_1_a22,
author = {V. V. Veremenyuk},
title = {A formula for the rotation number of a first-order equation whose right-hand side is quasiperiodic in time},
journal = {Differencialʹnye uravneni\^a},
pages = {158--159},
year = {1995},
volume = {31},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1995_31_1_a22/}
}
TY - JOUR AU - V. V. Veremenyuk TI - A formula for the rotation number of a first-order equation whose right-hand side is quasiperiodic in time JO - Differencialʹnye uravneniâ PY - 1995 SP - 158 EP - 159 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/DE_1995_31_1_a22/ LA - ru ID - DE_1995_31_1_a22 ER -
V. V. Veremenyuk. A formula for the rotation number of a first-order equation whose right-hand side is quasiperiodic in time. Differencialʹnye uravneniâ, Tome 31 (1995) no. 1, pp. 158-159. http://geodesic.mathdoc.fr/item/DE_1995_31_1_a22/