Equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion corresponding to a selfadjoint extension of the Schrödinger operator with a uniformly locally summable potential
Differencialʹnye uravneniâ, Tome 31 (1995) no. 12, pp. 1957-1967
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1995_31_12_a1,
author = {V. A. Il'in},
title = {Equiconvergence, uniform on the whole line $\mathbf R$, with the {Fourier} integral of the spectral expansion corresponding to a selfadjoint extension of the {Schr\"odinger} operator with a uniformly locally summable potential},
journal = {Differencialʹnye uravneni\^a},
pages = {1957--1967},
year = {1995},
volume = {31},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1995_31_12_a1/}
}
TY - JOUR AU - V. A. Il'in TI - Equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion corresponding to a selfadjoint extension of the Schrödinger operator with a uniformly locally summable potential JO - Differencialʹnye uravneniâ PY - 1995 SP - 1957 EP - 1967 VL - 31 IS - 12 UR - http://geodesic.mathdoc.fr/item/DE_1995_31_12_a1/ LA - ru ID - DE_1995_31_12_a1 ER -
%0 Journal Article %A V. A. Il'in %T Equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion corresponding to a selfadjoint extension of the Schrödinger operator with a uniformly locally summable potential %J Differencialʹnye uravneniâ %D 1995 %P 1957-1967 %V 31 %N 12 %U http://geodesic.mathdoc.fr/item/DE_1995_31_12_a1/ %G ru %F DE_1995_31_12_a1
V. A. Il'in. Equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion corresponding to a selfadjoint extension of the Schrödinger operator with a uniformly locally summable potential. Differencialʹnye uravneniâ, Tome 31 (1995) no. 12, pp. 1957-1967. http://geodesic.mathdoc.fr/item/DE_1995_31_12_a1/