An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the Schrödinger operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$
Differencialʹnye uravneniâ, Tome 31 (1995) no. 11, pp. 1829-1842
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1995_31_11_a6,
author = {V. A. Il'in and E. I. Moiseev},
title = {An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the {Schr\"odinger} operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$},
journal = {Differencialʹnye uravneni\^a},
pages = {1829--1842},
year = {1995},
volume = {31},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1995_31_11_a6/}
}
TY - JOUR AU - V. A. Il'in AU - E. I. Moiseev TI - An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the Schrödinger operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$ JO - Differencialʹnye uravneniâ PY - 1995 SP - 1829 EP - 1842 VL - 31 IS - 11 UR - http://geodesic.mathdoc.fr/item/DE_1995_31_11_a6/ LA - ru ID - DE_1995_31_11_a6 ER -
%0 Journal Article %A V. A. Il'in %A E. I. Moiseev %T An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the Schrödinger operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$ %J Differencialʹnye uravneniâ %D 1995 %P 1829-1842 %V 31 %N 11 %U http://geodesic.mathdoc.fr/item/DE_1995_31_11_a6/ %G ru %F DE_1995_31_11_a6
V. A. Il'in; E. I. Moiseev. An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the Schrödinger operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$. Differencialʹnye uravneniâ, Tome 31 (1995) no. 11, pp. 1829-1842. http://geodesic.mathdoc.fr/item/DE_1995_31_11_a6/