An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the Schr\"odinger operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$
Differencialʹnye uravneniâ, Tome 31 (1995) no. 11, pp. 1829-1842.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1995_31_11_a6,
     author = {V. A. Il'in and E. I. Moiseev},
     title = {An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the {Schr\"odinger} operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1829--1842},
     publisher = {mathdoc},
     volume = {31},
     number = {11},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1995_31_11_a6/}
}
TY  - JOUR
AU  - V. A. Il'in
AU  - E. I. Moiseev
TI  - An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the Schr\"odinger operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$
JO  - Differencialʹnye uravneniâ
PY  - 1995
SP  - 1829
EP  - 1842
VL  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1995_31_11_a6/
LA  - ru
ID  - DE_1995_31_11_a6
ER  - 
%0 Journal Article
%A V. A. Il'in
%A E. I. Moiseev
%T An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the Schr\"odinger operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$
%J Differencialʹnye uravneniâ
%D 1995
%P 1829-1842
%V 31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1995_31_11_a6/
%G ru
%F DE_1995_31_11_a6
V. A. Il'in; E. I. Moiseev. An estimate, uniform in $\mathbf R^N$, for the squares of fundamental functions of a selfadjoint, bounded-from-below extension of the Schr\"odinger operator in $\mathbf R^N$ for $N=2$ and $N=3$ for the case of a potential that is uniformly locally summable in $L_p$, $p>N/2$. Differencialʹnye uravneniâ, Tome 31 (1995) no. 11, pp. 1829-1842. http://geodesic.mathdoc.fr/item/DE_1995_31_11_a6/