A three-point difference scheme of a high order of accuracy for a system of second-order ordinary differential equations (the nonselfadjoint case)
Differencialʹnye uravneniâ, Tome 30 (1994) no. 3, pp. 493-502
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1994_30_3_a16,
author = {V. L. Makarov and V. V. Guminsky},
title = {A three-point difference scheme of a high order of accuracy for a system of second-order ordinary differential equations (the nonselfadjoint case)},
journal = {Differencialʹnye uravneni\^a},
pages = {493--502},
year = {1994},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1994_30_3_a16/}
}
TY - JOUR AU - V. L. Makarov AU - V. V. Guminsky TI - A three-point difference scheme of a high order of accuracy for a system of second-order ordinary differential equations (the nonselfadjoint case) JO - Differencialʹnye uravneniâ PY - 1994 SP - 493 EP - 502 VL - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/DE_1994_30_3_a16/ LA - ru ID - DE_1994_30_3_a16 ER -
%0 Journal Article %A V. L. Makarov %A V. V. Guminsky %T A three-point difference scheme of a high order of accuracy for a system of second-order ordinary differential equations (the nonselfadjoint case) %J Differencialʹnye uravneniâ %D 1994 %P 493-502 %V 30 %N 3 %U http://geodesic.mathdoc.fr/item/DE_1994_30_3_a16/ %G ru %F DE_1994_30_3_a16
V. L. Makarov; V. V. Guminsky. A three-point difference scheme of a high order of accuracy for a system of second-order ordinary differential equations (the nonselfadjoint case). Differencialʹnye uravneniâ, Tome 30 (1994) no. 3, pp. 493-502. http://geodesic.mathdoc.fr/item/DE_1994_30_3_a16/