Algebraic approach to the study of stability of Cauchy problem for Fedorov systems of partial differential equations
Differencialʹnye uravneniâ, Tome 29 (1993) no. 4, pp. 715-716
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1993_29_4_a15,
author = {S. V. Zhestkov and E. A. Ermolaev},
title = {Algebraic approach to the study of stability of {Cauchy} problem for {Fedorov} systems of partial differential equations},
journal = {Differencialʹnye uravneni\^a},
pages = {715--716},
year = {1993},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1993_29_4_a15/}
}
TY - JOUR AU - S. V. Zhestkov AU - E. A. Ermolaev TI - Algebraic approach to the study of stability of Cauchy problem for Fedorov systems of partial differential equations JO - Differencialʹnye uravneniâ PY - 1993 SP - 715 EP - 716 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/DE_1993_29_4_a15/ LA - ru ID - DE_1993_29_4_a15 ER -
%0 Journal Article %A S. V. Zhestkov %A E. A. Ermolaev %T Algebraic approach to the study of stability of Cauchy problem for Fedorov systems of partial differential equations %J Differencialʹnye uravneniâ %D 1993 %P 715-716 %V 29 %N 4 %U http://geodesic.mathdoc.fr/item/DE_1993_29_4_a15/ %G ru %F DE_1993_29_4_a15
S. V. Zhestkov; E. A. Ermolaev. Algebraic approach to the study of stability of Cauchy problem for Fedorov systems of partial differential equations. Differencialʹnye uravneniâ, Tome 29 (1993) no. 4, pp. 715-716. http://geodesic.mathdoc.fr/item/DE_1993_29_4_a15/