An estimate for the difference of partial sums of spectral expansions of an absolutely continuous function that correspond to two one-dimensional Schrödinger operators with complex-valued potentials in the class $L_p$, for $p>1$
Differencialʹnye uravneniâ, Tome 29 (1993) no. 1, pp. 118-127
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1993_29_1_a15,
author = {E. I. Nikol'skaya},
title = {An estimate for the difference of partial sums of spectral expansions of an absolutely continuous function that correspond to two one-dimensional {Schr\"odinger} operators with complex-valued potentials in the class $L_p$, for $p>1$},
journal = {Differencialʹnye uravneni\^a},
pages = {118--127},
year = {1993},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1993_29_1_a15/}
}
TY - JOUR AU - E. I. Nikol'skaya TI - An estimate for the difference of partial sums of spectral expansions of an absolutely continuous function that correspond to two one-dimensional Schrödinger operators with complex-valued potentials in the class $L_p$, for $p>1$ JO - Differencialʹnye uravneniâ PY - 1993 SP - 118 EP - 127 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/DE_1993_29_1_a15/ LA - ru ID - DE_1993_29_1_a15 ER -
%0 Journal Article %A E. I. Nikol'skaya %T An estimate for the difference of partial sums of spectral expansions of an absolutely continuous function that correspond to two one-dimensional Schrödinger operators with complex-valued potentials in the class $L_p$, for $p>1$ %J Differencialʹnye uravneniâ %D 1993 %P 118-127 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/DE_1993_29_1_a15/ %G ru %F DE_1993_29_1_a15
E. I. Nikol'skaya. An estimate for the difference of partial sums of spectral expansions of an absolutely continuous function that correspond to two one-dimensional Schrödinger operators with complex-valued potentials in the class $L_p$, for $p>1$. Differencialʹnye uravneniâ, Tome 29 (1993) no. 1, pp. 118-127. http://geodesic.mathdoc.fr/item/DE_1993_29_1_a15/