Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1993_29_1_a15, author = {E. I. Nikol'skaya}, title = {An estimate for the difference of partial sums of spectral expansions of an absolutely continuous function that correspond to two one-dimensional {Schr\"odinger} operators with complex-valued potentials in the class $L_p$, for $p>1$}, journal = {Differencialʹnye uravneni\^a}, pages = {118--127}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1993_29_1_a15/} }
TY - JOUR AU - E. I. Nikol'skaya TI - An estimate for the difference of partial sums of spectral expansions of an absolutely continuous function that correspond to two one-dimensional Schr\"odinger operators with complex-valued potentials in the class $L_p$, for $p>1$ JO - Differencialʹnye uravneniâ PY - 1993 SP - 118 EP - 127 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1993_29_1_a15/ LA - ru ID - DE_1993_29_1_a15 ER -
%0 Journal Article %A E. I. Nikol'skaya %T An estimate for the difference of partial sums of spectral expansions of an absolutely continuous function that correspond to two one-dimensional Schr\"odinger operators with complex-valued potentials in the class $L_p$, for $p>1$ %J Differencialʹnye uravneniâ %D 1993 %P 118-127 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1993_29_1_a15/ %G ru %F DE_1993_29_1_a15
E. I. Nikol'skaya. An estimate for the difference of partial sums of spectral expansions of an absolutely continuous function that correspond to two one-dimensional Schr\"odinger operators with complex-valued potentials in the class $L_p$, for $p>1$. Differencialʹnye uravneniâ, Tome 29 (1993) no. 1, pp. 118-127. http://geodesic.mathdoc.fr/item/DE_1993_29_1_a15/