A uniqueness theorem for the Sturm–Liouville operator on a segment with a potential that has a nonintegrable singularity
Differencialʹnye uravneniâ, Tome 29 (1993) no. 12, pp. 2125-2134
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1993_29_12_a9,
author = {L. A. Zhornitskaya and V. S. Serov},
title = {A uniqueness theorem for the {Sturm{\textendash}Liouville} operator on a segment with a potential that has a nonintegrable singularity},
journal = {Differencialʹnye uravneni\^a},
pages = {2125--2134},
year = {1993},
volume = {29},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1993_29_12_a9/}
}
TY - JOUR AU - L. A. Zhornitskaya AU - V. S. Serov TI - A uniqueness theorem for the Sturm–Liouville operator on a segment with a potential that has a nonintegrable singularity JO - Differencialʹnye uravneniâ PY - 1993 SP - 2125 EP - 2134 VL - 29 IS - 12 UR - http://geodesic.mathdoc.fr/item/DE_1993_29_12_a9/ LA - ru ID - DE_1993_29_12_a9 ER -
%0 Journal Article %A L. A. Zhornitskaya %A V. S. Serov %T A uniqueness theorem for the Sturm–Liouville operator on a segment with a potential that has a nonintegrable singularity %J Differencialʹnye uravneniâ %D 1993 %P 2125-2134 %V 29 %N 12 %U http://geodesic.mathdoc.fr/item/DE_1993_29_12_a9/ %G ru %F DE_1993_29_12_a9
L. A. Zhornitskaya; V. S. Serov. A uniqueness theorem for the Sturm–Liouville operator on a segment with a potential that has a nonintegrable singularity. Differencialʹnye uravneniâ, Tome 29 (1993) no. 12, pp. 2125-2134. http://geodesic.mathdoc.fr/item/DE_1993_29_12_a9/