A uniqueness theorem for the Sturm--Liouville operator on a segment with a potential that has a nonintegrable singularity
Differencialʹnye uravneniâ, Tome 29 (1993) no. 12, pp. 2125-2134.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1993_29_12_a9,
     author = {L. A. Zhornitskaya and V. S. Serov},
     title = {A uniqueness theorem for the {Sturm--Liouville} operator on a segment with a potential that has a nonintegrable singularity},
     journal = {Differencialʹnye uravneni\^a},
     pages = {2125--2134},
     publisher = {mathdoc},
     volume = {29},
     number = {12},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1993_29_12_a9/}
}
TY  - JOUR
AU  - L. A. Zhornitskaya
AU  - V. S. Serov
TI  - A uniqueness theorem for the Sturm--Liouville operator on a segment with a potential that has a nonintegrable singularity
JO  - Differencialʹnye uravneniâ
PY  - 1993
SP  - 2125
EP  - 2134
VL  - 29
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1993_29_12_a9/
LA  - ru
ID  - DE_1993_29_12_a9
ER  - 
%0 Journal Article
%A L. A. Zhornitskaya
%A V. S. Serov
%T A uniqueness theorem for the Sturm--Liouville operator on a segment with a potential that has a nonintegrable singularity
%J Differencialʹnye uravneniâ
%D 1993
%P 2125-2134
%V 29
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1993_29_12_a9/
%G ru
%F DE_1993_29_12_a9
L. A. Zhornitskaya; V. S. Serov. A uniqueness theorem for the Sturm--Liouville operator on a segment with a potential that has a nonintegrable singularity. Differencialʹnye uravneniâ, Tome 29 (1993) no. 12, pp. 2125-2134. http://geodesic.mathdoc.fr/item/DE_1993_29_12_a9/