Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1992_28_9_a24, author = {V. M. Filippov and A. N. Tischenko}, title = {The direct variational method for operator equations $u^{(k)}+C^mu=f$, $k=1,2$; $m\in\mathbf N$}, journal = {Differencialʹnye uravneni\^a}, pages = {1642--1643}, publisher = {mathdoc}, volume = {28}, number = {9}, year = {1992}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1992_28_9_a24/} }
TY - JOUR AU - V. M. Filippov AU - A. N. Tischenko TI - The direct variational method for operator equations $u^{(k)}+C^mu=f$, $k=1,2$; $m\in\mathbf N$ JO - Differencialʹnye uravneniâ PY - 1992 SP - 1642 EP - 1643 VL - 28 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1992_28_9_a24/ LA - ru ID - DE_1992_28_9_a24 ER -
%0 Journal Article %A V. M. Filippov %A A. N. Tischenko %T The direct variational method for operator equations $u^{(k)}+C^mu=f$, $k=1,2$; $m\in\mathbf N$ %J Differencialʹnye uravneniâ %D 1992 %P 1642-1643 %V 28 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1992_28_9_a24/ %G ru %F DE_1992_28_9_a24
V. M. Filippov; A. N. Tischenko. The direct variational method for operator equations $u^{(k)}+C^mu=f$, $k=1,2$; $m\in\mathbf N$. Differencialʹnye uravneniâ, Tome 28 (1992) no. 9, pp. 1642-1643. http://geodesic.mathdoc.fr/item/DE_1992_28_9_a24/