The direct variational method for operator equations $u^{(k)}+C^mu=f$, $k=1,2$; $m\in\mathbf N$
Differencialʹnye uravneniâ, Tome 28 (1992) no. 9, pp. 1642-1643.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1992_28_9_a24,
     author = {V. M. Filippov and A. N. Tischenko},
     title = {The direct variational method for operator equations $u^{(k)}+C^mu=f$, $k=1,2$; $m\in\mathbf N$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1642--1643},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1992_28_9_a24/}
}
TY  - JOUR
AU  - V. M. Filippov
AU  - A. N. Tischenko
TI  - The direct variational method for operator equations $u^{(k)}+C^mu=f$, $k=1,2$; $m\in\mathbf N$
JO  - Differencialʹnye uravneniâ
PY  - 1992
SP  - 1642
EP  - 1643
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1992_28_9_a24/
LA  - ru
ID  - DE_1992_28_9_a24
ER  - 
%0 Journal Article
%A V. M. Filippov
%A A. N. Tischenko
%T The direct variational method for operator equations $u^{(k)}+C^mu=f$, $k=1,2$; $m\in\mathbf N$
%J Differencialʹnye uravneniâ
%D 1992
%P 1642-1643
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1992_28_9_a24/
%G ru
%F DE_1992_28_9_a24
V. M. Filippov; A. N. Tischenko. The direct variational method for operator equations $u^{(k)}+C^mu=f$, $k=1,2$; $m\in\mathbf N$. Differencialʹnye uravneniâ, Tome 28 (1992) no. 9, pp. 1642-1643. http://geodesic.mathdoc.fr/item/DE_1992_28_9_a24/