On the basis property and equiconvergence with a trigonometric series of spectral expansions of a $2n$-order differential operator
Differencialʹnye uravneniâ, Tome 28 (1992) no. 7, pp. 1279-1280
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1992_28_7_a23,
author = {V. M. Kurbanov},
title = {On the basis property and equiconvergence with a trigonometric series of spectral expansions of a $2n$-order differential operator},
journal = {Differencialʹnye uravneni\^a},
pages = {1279--1280},
year = {1992},
volume = {28},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1992_28_7_a23/}
}
TY - JOUR AU - V. M. Kurbanov TI - On the basis property and equiconvergence with a trigonometric series of spectral expansions of a $2n$-order differential operator JO - Differencialʹnye uravneniâ PY - 1992 SP - 1279 EP - 1280 VL - 28 IS - 7 UR - http://geodesic.mathdoc.fr/item/DE_1992_28_7_a23/ LA - ru ID - DE_1992_28_7_a23 ER -
%0 Journal Article %A V. M. Kurbanov %T On the basis property and equiconvergence with a trigonometric series of spectral expansions of a $2n$-order differential operator %J Differencialʹnye uravneniâ %D 1992 %P 1279-1280 %V 28 %N 7 %U http://geodesic.mathdoc.fr/item/DE_1992_28_7_a23/ %G ru %F DE_1992_28_7_a23
V. M. Kurbanov. On the basis property and equiconvergence with a trigonometric series of spectral expansions of a $2n$-order differential operator. Differencialʹnye uravneniâ, Tome 28 (1992) no. 7, pp. 1279-1280. http://geodesic.mathdoc.fr/item/DE_1992_28_7_a23/