The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$
Differencialʹnye uravneniâ, Tome 27 (1991) no. 6, pp. 1073-1076
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1991_27_6_a21,
author = {V. V. Veremenyuk},
title = {The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$},
journal = {Differencialʹnye uravneni\^a},
pages = {1073--1076},
year = {1991},
volume = {27},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1991_27_6_a21/}
}
TY - JOUR AU - V. V. Veremenyuk TI - The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$ JO - Differencialʹnye uravneniâ PY - 1991 SP - 1073 EP - 1076 VL - 27 IS - 6 UR - http://geodesic.mathdoc.fr/item/DE_1991_27_6_a21/ LA - ru ID - DE_1991_27_6_a21 ER -
%0 Journal Article %A V. V. Veremenyuk %T The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$ %J Differencialʹnye uravneniâ %D 1991 %P 1073-1076 %V 27 %N 6 %U http://geodesic.mathdoc.fr/item/DE_1991_27_6_a21/ %G ru %F DE_1991_27_6_a21
V. V. Veremenyuk. The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$. Differencialʹnye uravneniâ, Tome 27 (1991) no. 6, pp. 1073-1076. http://geodesic.mathdoc.fr/item/DE_1991_27_6_a21/