Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1991_27_6_a21, author = {V. V. Veremenyuk}, title = {The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$}, journal = {Differencialʹnye uravneni\^a}, pages = {1073--1076}, publisher = {mathdoc}, volume = {27}, number = {6}, year = {1991}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1991_27_6_a21/} }
TY - JOUR AU - V. V. Veremenyuk TI - The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$ JO - Differencialʹnye uravneniâ PY - 1991 SP - 1073 EP - 1076 VL - 27 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1991_27_6_a21/ LA - ru ID - DE_1991_27_6_a21 ER -
%0 Journal Article %A V. V. Veremenyuk %T The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$ %J Differencialʹnye uravneniâ %D 1991 %P 1073-1076 %V 27 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1991_27_6_a21/ %G ru %F DE_1991_27_6_a21
V. V. Veremenyuk. The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$. Differencialʹnye uravneniâ, Tome 27 (1991) no. 6, pp. 1073-1076. http://geodesic.mathdoc.fr/item/DE_1991_27_6_a21/