Equiconvergence, with a trigonometric series, of expansions in root functions of the one-dimensional Schrödinger operator with complex potential in the class $L_1$
Differencialʹnye uravneniâ, Tome 27 (1991) no. 4, pp. 577-597
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1991_27_4_a3,
author = {V. A. Il'in},
title = {Equiconvergence, with a trigonometric series, of expansions in root functions of the one-dimensional {Schr\"odinger} operator with complex potential in the class $L_1$},
journal = {Differencialʹnye uravneni\^a},
pages = {577--597},
year = {1991},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1991_27_4_a3/}
}
TY - JOUR AU - V. A. Il'in TI - Equiconvergence, with a trigonometric series, of expansions in root functions of the one-dimensional Schrödinger operator with complex potential in the class $L_1$ JO - Differencialʹnye uravneniâ PY - 1991 SP - 577 EP - 597 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/DE_1991_27_4_a3/ LA - ru ID - DE_1991_27_4_a3 ER -
%0 Journal Article %A V. A. Il'in %T Equiconvergence, with a trigonometric series, of expansions in root functions of the one-dimensional Schrödinger operator with complex potential in the class $L_1$ %J Differencialʹnye uravneniâ %D 1991 %P 577-597 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/DE_1991_27_4_a3/ %G ru %F DE_1991_27_4_a3
V. A. Il'in. Equiconvergence, with a trigonometric series, of expansions in root functions of the one-dimensional Schrödinger operator with complex potential in the class $L_1$. Differencialʹnye uravneniâ, Tome 27 (1991) no. 4, pp. 577-597. http://geodesic.mathdoc.fr/item/DE_1991_27_4_a3/