On the stability in a critical case of a zero and a pair of pure imaginary roots of an $n$-th order nonautonomous nonlinear equation
Differencialʹnye uravneniâ, Tome 27 (1991) no. 2, pp. 350-354
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1991_27_2_a20,
author = {I. E. Vitrichenko},
title = {On the stability in a critical case of a zero and a pair of pure imaginary roots of an $n$-th order nonautonomous nonlinear equation},
journal = {Differencialʹnye uravneni\^a},
pages = {350--354},
year = {1991},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1991_27_2_a20/}
}
TY - JOUR AU - I. E. Vitrichenko TI - On the stability in a critical case of a zero and a pair of pure imaginary roots of an $n$-th order nonautonomous nonlinear equation JO - Differencialʹnye uravneniâ PY - 1991 SP - 350 EP - 354 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/DE_1991_27_2_a20/ LA - ru ID - DE_1991_27_2_a20 ER -
%0 Journal Article %A I. E. Vitrichenko %T On the stability in a critical case of a zero and a pair of pure imaginary roots of an $n$-th order nonautonomous nonlinear equation %J Differencialʹnye uravneniâ %D 1991 %P 350-354 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/DE_1991_27_2_a20/ %G ru %F DE_1991_27_2_a20
I. E. Vitrichenko. On the stability in a critical case of a zero and a pair of pure imaginary roots of an $n$-th order nonautonomous nonlinear equation. Differencialʹnye uravneniâ, Tome 27 (1991) no. 2, pp. 350-354. http://geodesic.mathdoc.fr/item/DE_1991_27_2_a20/