Strictly hyperbolic higher-order equations in $L^p(\mathbf R^n)$, $1$
Differencialʹnye uravneniâ, Tome 27 (1991) no. 2, pp. 312-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1991_27_2_a15,
     author = {M. I. \`Efendiev},
     title = {Strictly hyperbolic higher-order equations in $L^p(\mathbf R^n)$, $1<p<+\infty$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {312--320},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1991_27_2_a15/}
}
TY  - JOUR
AU  - M. I. Èfendiev
TI  - Strictly hyperbolic higher-order equations in $L^p(\mathbf R^n)$, $1
JO  - Differencialʹnye uravneniâ
PY  - 1991
SP  - 312
EP  - 320
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1991_27_2_a15/
LA  - ru
ID  - DE_1991_27_2_a15
ER  - 
%0 Journal Article
%A M. I. Èfendiev
%T Strictly hyperbolic higher-order equations in $L^p(\mathbf R^n)$, $1
%J Differencialʹnye uravneniâ
%D 1991
%P 312-320
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1991_27_2_a15/
%G ru
%F DE_1991_27_2_a15
M. I. Èfendiev. Strictly hyperbolic higher-order equations in $L^p(\mathbf R^n)$, $1