On the asymptotic behavior with respect to the small parameter of solutions of a fourth-order nonlinear evolution system that admits an $L$-$A$ representation
Differencialʹnye uravneniâ, Tome 27 (1991) no. 1, pp. 161-163
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1991_27_1_a19,
author = {A. V. Il'ina},
title = {On the asymptotic behavior with respect to the small parameter of solutions of a fourth-order nonlinear evolution system that admits an $L$-$A$ representation},
journal = {Differencialʹnye uravneni\^a},
pages = {161--163},
year = {1991},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1991_27_1_a19/}
}
TY - JOUR AU - A. V. Il'ina TI - On the asymptotic behavior with respect to the small parameter of solutions of a fourth-order nonlinear evolution system that admits an $L$-$A$ representation JO - Differencialʹnye uravneniâ PY - 1991 SP - 161 EP - 163 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/DE_1991_27_1_a19/ LA - ru ID - DE_1991_27_1_a19 ER -
%0 Journal Article %A A. V. Il'ina %T On the asymptotic behavior with respect to the small parameter of solutions of a fourth-order nonlinear evolution system that admits an $L$-$A$ representation %J Differencialʹnye uravneniâ %D 1991 %P 161-163 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/DE_1991_27_1_a19/ %G ru %F DE_1991_27_1_a19
A. V. Il'ina. On the asymptotic behavior with respect to the small parameter of solutions of a fourth-order nonlinear evolution system that admits an $L$-$A$ representation. Differencialʹnye uravneniâ, Tome 27 (1991) no. 1, pp. 161-163. http://geodesic.mathdoc.fr/item/DE_1991_27_1_a19/