Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1991_27_11_a3, author = {V. A. Il'in}, title = {Componentwise equiconvergence with a trigonometric series of expansions in root vector functions of the {Schr\"odinger} operator with a matrix {non-Hermitian} potential, all elements of which are only summable}, journal = {Differencialʹnye uravneni\^a}, pages = {1862--1879}, publisher = {mathdoc}, volume = {27}, number = {11}, year = {1991}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1991_27_11_a3/} }
TY - JOUR AU - V. A. Il'in TI - Componentwise equiconvergence with a trigonometric series of expansions in root vector functions of the Schr\"odinger operator with a matrix non-Hermitian potential, all elements of which are only summable JO - Differencialʹnye uravneniâ PY - 1991 SP - 1862 EP - 1879 VL - 27 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1991_27_11_a3/ LA - ru ID - DE_1991_27_11_a3 ER -
%0 Journal Article %A V. A. Il'in %T Componentwise equiconvergence with a trigonometric series of expansions in root vector functions of the Schr\"odinger operator with a matrix non-Hermitian potential, all elements of which are only summable %J Differencialʹnye uravneniâ %D 1991 %P 1862-1879 %V 27 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1991_27_11_a3/ %G ru %F DE_1991_27_11_a3
V. A. Il'in. Componentwise equiconvergence with a trigonometric series of expansions in root vector functions of the Schr\"odinger operator with a matrix non-Hermitian potential, all elements of which are only summable. Differencialʹnye uravneniâ, Tome 27 (1991) no. 11, pp. 1862-1879. http://geodesic.mathdoc.fr/item/DE_1991_27_11_a3/