A criterion for the coexistence of a center and a focus of the equation $y'=(x+\lambda y+Q_3)/(-y+\lambda x+P_3)$
Differencialʹnye uravneniâ, Tome 27 (1991) no. 11, pp. 2001-2005
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1991_27_11_a22,
author = {N. L. Shcheglova},
title = {A criterion for the coexistence of a center and a focus of the equation $y'=(x+\lambda y+Q_3)/(-y+\lambda x+P_3)$},
journal = {Differencialʹnye uravneni\^a},
pages = {2001--2005},
year = {1991},
volume = {27},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1991_27_11_a22/}
}
TY - JOUR AU - N. L. Shcheglova TI - A criterion for the coexistence of a center and a focus of the equation $y'=(x+\lambda y+Q_3)/(-y+\lambda x+P_3)$ JO - Differencialʹnye uravneniâ PY - 1991 SP - 2001 EP - 2005 VL - 27 IS - 11 UR - http://geodesic.mathdoc.fr/item/DE_1991_27_11_a22/ LA - ru ID - DE_1991_27_11_a22 ER -
N. L. Shcheglova. A criterion for the coexistence of a center and a focus of the equation $y'=(x+\lambda y+Q_3)/(-y+\lambda x+P_3)$. Differencialʹnye uravneniâ, Tome 27 (1991) no. 11, pp. 2001-2005. http://geodesic.mathdoc.fr/item/DE_1991_27_11_a22/