Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1991_27_11_a22, author = {N. L. Shcheglova}, title = {A criterion for the coexistence of a center and a focus of the equation $y'=(x+\lambda y+Q_3)/(-y+\lambda x+P_3)$}, journal = {Differencialʹnye uravneni\^a}, pages = {2001--2005}, publisher = {mathdoc}, volume = {27}, number = {11}, year = {1991}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1991_27_11_a22/} }
TY - JOUR AU - N. L. Shcheglova TI - A criterion for the coexistence of a center and a focus of the equation $y'=(x+\lambda y+Q_3)/(-y+\lambda x+P_3)$ JO - Differencialʹnye uravneniâ PY - 1991 SP - 2001 EP - 2005 VL - 27 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1991_27_11_a22/ LA - ru ID - DE_1991_27_11_a22 ER -
%0 Journal Article %A N. L. Shcheglova %T A criterion for the coexistence of a center and a focus of the equation $y'=(x+\lambda y+Q_3)/(-y+\lambda x+P_3)$ %J Differencialʹnye uravneniâ %D 1991 %P 2001-2005 %V 27 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1991_27_11_a22/ %G ru %F DE_1991_27_11_a22
N. L. Shcheglova. A criterion for the coexistence of a center and a focus of the equation $y'=(x+\lambda y+Q_3)/(-y+\lambda x+P_3)$. Differencialʹnye uravneniâ, Tome 27 (1991) no. 11, pp. 2001-2005. http://geodesic.mathdoc.fr/item/DE_1991_27_11_a22/