An analogue of the Newton diagram method for a class of singularly perturbed differential equations.~II
Differencialʹnye uravneniâ, Tome 26 (1990) no. 9, pp. 1500-1509.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1990_26_9_a3,
     author = {G. S. Zhukova},
     title = {An analogue of the {Newton} diagram method for a class of singularly perturbed differential {equations.~II}},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1500--1509},
     publisher = {mathdoc},
     volume = {26},
     number = {9},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1990_26_9_a3/}
}
TY  - JOUR
AU  - G. S. Zhukova
TI  - An analogue of the Newton diagram method for a class of singularly perturbed differential equations.~II
JO  - Differencialʹnye uravneniâ
PY  - 1990
SP  - 1500
EP  - 1509
VL  - 26
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1990_26_9_a3/
LA  - ru
ID  - DE_1990_26_9_a3
ER  - 
%0 Journal Article
%A G. S. Zhukova
%T An analogue of the Newton diagram method for a class of singularly perturbed differential equations.~II
%J Differencialʹnye uravneniâ
%D 1990
%P 1500-1509
%V 26
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1990_26_9_a3/
%G ru
%F DE_1990_26_9_a3
G. S. Zhukova. An analogue of the Newton diagram method for a class of singularly perturbed differential equations.~II. Differencialʹnye uravneniâ, Tome 26 (1990) no. 9, pp. 1500-1509. http://geodesic.mathdoc.fr/item/DE_1990_26_9_a3/