Existence of solutions that are smooth with respect to the parameter for singularly perturbed equations
Differencialʹnye uravneniâ, Tome 26 (1990) no. 9, pp. 1641-1643.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1990_26_9_a23,
     author = {V. I. Kachalov},
     title = {Existence of solutions that are smooth with respect to the parameter for singularly perturbed equations},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1641--1643},
     publisher = {mathdoc},
     volume = {26},
     number = {9},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1990_26_9_a23/}
}
TY  - JOUR
AU  - V. I. Kachalov
TI  - Existence of solutions that are smooth with respect to the parameter for singularly perturbed equations
JO  - Differencialʹnye uravneniâ
PY  - 1990
SP  - 1641
EP  - 1643
VL  - 26
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1990_26_9_a23/
LA  - ru
ID  - DE_1990_26_9_a23
ER  - 
%0 Journal Article
%A V. I. Kachalov
%T Existence of solutions that are smooth with respect to the parameter for singularly perturbed equations
%J Differencialʹnye uravneniâ
%D 1990
%P 1641-1643
%V 26
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1990_26_9_a23/
%G ru
%F DE_1990_26_9_a23
V. I. Kachalov. Existence of solutions that are smooth with respect to the parameter for singularly perturbed equations. Differencialʹnye uravneniâ, Tome 26 (1990) no. 9, pp. 1641-1643. http://geodesic.mathdoc.fr/item/DE_1990_26_9_a23/