Exponentially decreasing perturbations that preserve the characteristic exponents of a linear diagonal system
Differencialʹnye uravneniâ, Tome 26 (1990) no. 6, pp. 934-943 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{DE_1990_26_6_a2,
     author = {N. A. Izobov and O. P. Stepanovich},
     title = {Exponentially decreasing perturbations that preserve the characteristic exponents of a linear diagonal system},
     journal = {Differencialʹnye uravneni\^a},
     pages = {934--943},
     year = {1990},
     volume = {26},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1990_26_6_a2/}
}
TY  - JOUR
AU  - N. A. Izobov
AU  - O. P. Stepanovich
TI  - Exponentially decreasing perturbations that preserve the characteristic exponents of a linear diagonal system
JO  - Differencialʹnye uravneniâ
PY  - 1990
SP  - 934
EP  - 943
VL  - 26
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/DE_1990_26_6_a2/
LA  - ru
ID  - DE_1990_26_6_a2
ER  - 
%0 Journal Article
%A N. A. Izobov
%A O. P. Stepanovich
%T Exponentially decreasing perturbations that preserve the characteristic exponents of a linear diagonal system
%J Differencialʹnye uravneniâ
%D 1990
%P 934-943
%V 26
%N 6
%U http://geodesic.mathdoc.fr/item/DE_1990_26_6_a2/
%G ru
%F DE_1990_26_6_a2
N. A. Izobov; O. P. Stepanovich. Exponentially decreasing perturbations that preserve the characteristic exponents of a linear diagonal system. Differencialʹnye uravneniâ, Tome 26 (1990) no. 6, pp. 934-943. http://geodesic.mathdoc.fr/item/DE_1990_26_6_a2/