On the stability in the critical case of a zero root and of a pair of purely imaginary roots of a nonautonomous $n$th order quasilinear equation
Differencialʹnye uravneniâ, Tome 26 (1990) no. 12, pp. 2027-2046
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1990_26_12_a0,
author = {I. E. Vitrichenko},
title = {On the stability in the critical case of a zero root and of a pair of purely imaginary roots of a nonautonomous $n$th order quasilinear equation},
journal = {Differencialʹnye uravneni\^a},
pages = {2027--2046},
year = {1990},
volume = {26},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1990_26_12_a0/}
}
TY - JOUR AU - I. E. Vitrichenko TI - On the stability in the critical case of a zero root and of a pair of purely imaginary roots of a nonautonomous $n$th order quasilinear equation JO - Differencialʹnye uravneniâ PY - 1990 SP - 2027 EP - 2046 VL - 26 IS - 12 UR - http://geodesic.mathdoc.fr/item/DE_1990_26_12_a0/ LA - ru ID - DE_1990_26_12_a0 ER -
%0 Journal Article %A I. E. Vitrichenko %T On the stability in the critical case of a zero root and of a pair of purely imaginary roots of a nonautonomous $n$th order quasilinear equation %J Differencialʹnye uravneniâ %D 1990 %P 2027-2046 %V 26 %N 12 %U http://geodesic.mathdoc.fr/item/DE_1990_26_12_a0/ %G ru %F DE_1990_26_12_a0
I. E. Vitrichenko. On the stability in the critical case of a zero root and of a pair of purely imaginary roots of a nonautonomous $n$th order quasilinear equation. Differencialʹnye uravneniâ, Tome 26 (1990) no. 12, pp. 2027-2046. http://geodesic.mathdoc.fr/item/DE_1990_26_12_a0/