Accuracy of a difference scheme for quasilinear elliptic equations in a rhombus with solutions in the class $W_2^k(\Omega)$, $1$
Differencialʹnye uravneniâ, Tome 25 (1989) no. 7, pp. 1240-1249.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1989_25_7_a19,
     author = {V. L. Makarov and S. V. Makarov},
     title = {Accuracy of a difference scheme for quasilinear elliptic equations in a rhombus with solutions in the class $W_2^k(\Omega)$, $1<k\le4$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1240--1249},
     publisher = {mathdoc},
     volume = {25},
     number = {7},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1989_25_7_a19/}
}
TY  - JOUR
AU  - V. L. Makarov
AU  - S. V. Makarov
TI  - Accuracy of a difference scheme for quasilinear elliptic equations in a rhombus with solutions in the class $W_2^k(\Omega)$, $1
JO  - Differencialʹnye uravneniâ
PY  - 1989
SP  - 1240
EP  - 1249
VL  - 25
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1989_25_7_a19/
LA  - ru
ID  - DE_1989_25_7_a19
ER  - 
%0 Journal Article
%A V. L. Makarov
%A S. V. Makarov
%T Accuracy of a difference scheme for quasilinear elliptic equations in a rhombus with solutions in the class $W_2^k(\Omega)$, $1
%J Differencialʹnye uravneniâ
%D 1989
%P 1240-1249
%V 25
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1989_25_7_a19/
%G ru
%F DE_1989_25_7_a19
V. L. Makarov; S. V. Makarov. Accuracy of a difference scheme for quasilinear elliptic equations in a rhombus with solutions in the class $W_2^k(\Omega)$, $1