Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1989_25_7_a19, author = {V. L. Makarov and S. V. Makarov}, title = {Accuracy of a difference scheme for quasilinear elliptic equations in a rhombus with solutions in the class $W_2^k(\Omega)$, $1<k\le4$}, journal = {Differencialʹnye uravneni\^a}, pages = {1240--1249}, publisher = {mathdoc}, volume = {25}, number = {7}, year = {1989}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1989_25_7_a19/} }
TY - JOUR AU - V. L. Makarov AU - S. V. Makarov TI - Accuracy of a difference scheme for quasilinear elliptic equations in a rhombus with solutions in the class $W_2^k(\Omega)$, $1 JO - Differencialʹnye uravneniâ PY - 1989 SP - 1240 EP - 1249 VL - 25 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1989_25_7_a19/ LA - ru ID - DE_1989_25_7_a19 ER -
%0 Journal Article %A V. L. Makarov %A S. V. Makarov %T Accuracy of a difference scheme for quasilinear elliptic equations in a rhombus with solutions in the class $W_2^k(\Omega)$, $1 %J Differencialʹnye uravneniâ %D 1989 %P 1240-1249 %V 25 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1989_25_7_a19/ %G ru %F DE_1989_25_7_a19
V. L. Makarov; S. V. Makarov. Accuracy of a difference scheme for quasilinear elliptic equations in a rhombus with solutions in the class $W_2^k(\Omega)$, $1