The homogeneous Keldysh--Sedov problem for multiply connected circular domains in the Muskhelishvili class $h_0$
Differencialʹnye uravneniâ, Tome 25 (1989) no. 2, pp. 283-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1989_25_2_a15,
     author = {A. S. Sorokin},
     title = {The homogeneous {Keldysh--Sedov} problem for multiply connected circular domains in the {Muskhelishvili} class $h_0$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {283--293},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1989_25_2_a15/}
}
TY  - JOUR
AU  - A. S. Sorokin
TI  - The homogeneous Keldysh--Sedov problem for multiply connected circular domains in the Muskhelishvili class $h_0$
JO  - Differencialʹnye uravneniâ
PY  - 1989
SP  - 283
EP  - 293
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1989_25_2_a15/
LA  - ru
ID  - DE_1989_25_2_a15
ER  - 
%0 Journal Article
%A A. S. Sorokin
%T The homogeneous Keldysh--Sedov problem for multiply connected circular domains in the Muskhelishvili class $h_0$
%J Differencialʹnye uravneniâ
%D 1989
%P 283-293
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1989_25_2_a15/
%G ru
%F DE_1989_25_2_a15
A. S. Sorokin. The homogeneous Keldysh--Sedov problem for multiply connected circular domains in the Muskhelishvili class $h_0$. Differencialʹnye uravneniâ, Tome 25 (1989) no. 2, pp. 283-293. http://geodesic.mathdoc.fr/item/DE_1989_25_2_a15/