Estimates for the rate of convergence of the difference approximation of the Dirichlet problem for the equation $-\Delta u+\sum_{|\alpha|\le1}(-1)^{|\alpha|}D^\alpha q_\alpha(x)u=f(x)$ for $q_\alpha(x)\in W_\infty^{\lambda|\alpha|}(\Omega)$, $\lambda\in(0,1]$
Differencialʹnye uravneniâ, Tome 24 (1988) no. 11, pp. 1987-1994
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1988_24_11_a15,
author = {S. A. Voitsekhovskii and V. L. Makarov and Yu. I. Rybak},
title = {Estimates for the rate of convergence of the difference approximation of the {Dirichlet} problem for the equation $-\Delta u+\sum_{|\alpha|\le1}(-1)^{|\alpha|}D^\alpha q_\alpha(x)u=f(x)$ for $q_\alpha(x)\in W_\infty^{\lambda|\alpha|}(\Omega)$, $\lambda\in(0,1]$},
journal = {Differencialʹnye uravneni\^a},
pages = {1987--1994},
year = {1988},
volume = {24},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1988_24_11_a15/}
}
TY - JOUR
AU - S. A. Voitsekhovskii
AU - V. L. Makarov
AU - Yu. I. Rybak
TI - Estimates for the rate of convergence of the difference approximation of the Dirichlet problem for the equation $-\Delta u+\sum_{|\alpha|\le1}(-1)^{|\alpha|}D^\alpha q_\alpha(x)u=f(x)$ for $q_\alpha(x)\in W_\infty^{\lambda|\alpha|}(\Omega)$, $\lambda\in(0,1]$
JO - Differencialʹnye uravneniâ
PY - 1988
SP - 1987
EP - 1994
VL - 24
IS - 11
UR - http://geodesic.mathdoc.fr/item/DE_1988_24_11_a15/
LA - ru
ID - DE_1988_24_11_a15
ER -
%0 Journal Article
%A S. A. Voitsekhovskii
%A V. L. Makarov
%A Yu. I. Rybak
%T Estimates for the rate of convergence of the difference approximation of the Dirichlet problem for the equation $-\Delta u+\sum_{|\alpha|\le1}(-1)^{|\alpha|}D^\alpha q_\alpha(x)u=f(x)$ for $q_\alpha(x)\in W_\infty^{\lambda|\alpha|}(\Omega)$, $\lambda\in(0,1]$
%J Differencialʹnye uravneniâ
%D 1988
%P 1987-1994
%V 24
%N 11
%U http://geodesic.mathdoc.fr/item/DE_1988_24_11_a15/
%G ru
%F DE_1988_24_11_a15
S. A. Voitsekhovskii; V. L. Makarov; Yu. I. Rybak. Estimates for the rate of convergence of the difference approximation of the Dirichlet problem for the equation $-\Delta u+\sum_{|\alpha|\le1}(-1)^{|\alpha|}D^\alpha q_\alpha(x)u=f(x)$ for $q_\alpha(x)\in W_\infty^{\lambda|\alpha|}(\Omega)$, $\lambda\in(0,1]$. Differencialʹnye uravneniâ, Tome 24 (1988) no. 11, pp. 1987-1994. http://geodesic.mathdoc.fr/item/DE_1988_24_11_a15/