A generalization of the Banach–Cacciopolli principle to operators in pseudometric spaces
Differencialʹnye uravneniâ, Tome 23 (1987) no. 9, pp. 1497-1504
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1987_23_9_a2,
author = {P. P. Zabreiko and T. A. Makarevich},
title = {A generalization of the {Banach{\textendash}Cacciopolli} principle to operators in pseudometric spaces},
journal = {Differencialʹnye uravneni\^a},
pages = {1497--1504},
year = {1987},
volume = {23},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1987_23_9_a2/}
}
TY - JOUR AU - P. P. Zabreiko AU - T. A. Makarevich TI - A generalization of the Banach–Cacciopolli principle to operators in pseudometric spaces JO - Differencialʹnye uravneniâ PY - 1987 SP - 1497 EP - 1504 VL - 23 IS - 9 UR - http://geodesic.mathdoc.fr/item/DE_1987_23_9_a2/ LA - ru ID - DE_1987_23_9_a2 ER -
P. P. Zabreiko; T. A. Makarevich. A generalization of the Banach–Cacciopolli principle to operators in pseudometric spaces. Differencialʹnye uravneniâ, Tome 23 (1987) no. 9, pp. 1497-1504. http://geodesic.mathdoc.fr/item/DE_1987_23_9_a2/