$C^\infty$-equivalence of systems of differential equations with exponential asymptotic behavior of the solutions in a neighborhood of an invariant manifold
Differencialʹnye uravneniâ, Tome 23 (1987) no. 8, pp. 1331-1342
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1987_23_8_a5,
author = {S. P. Tokarev},
title = {$C^\infty$-equivalence of systems of differential equations with exponential asymptotic behavior of the solutions in a neighborhood of an invariant manifold},
journal = {Differencialʹnye uravneni\^a},
pages = {1331--1342},
year = {1987},
volume = {23},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1987_23_8_a5/}
}
TY - JOUR AU - S. P. Tokarev TI - $C^\infty$-equivalence of systems of differential equations with exponential asymptotic behavior of the solutions in a neighborhood of an invariant manifold JO - Differencialʹnye uravneniâ PY - 1987 SP - 1331 EP - 1342 VL - 23 IS - 8 UR - http://geodesic.mathdoc.fr/item/DE_1987_23_8_a5/ LA - ru ID - DE_1987_23_8_a5 ER -
%0 Journal Article %A S. P. Tokarev %T $C^\infty$-equivalence of systems of differential equations with exponential asymptotic behavior of the solutions in a neighborhood of an invariant manifold %J Differencialʹnye uravneniâ %D 1987 %P 1331-1342 %V 23 %N 8 %U http://geodesic.mathdoc.fr/item/DE_1987_23_8_a5/ %G ru %F DE_1987_23_8_a5
S. P. Tokarev. $C^\infty$-equivalence of systems of differential equations with exponential asymptotic behavior of the solutions in a neighborhood of an invariant manifold. Differencialʹnye uravneniâ, Tome 23 (1987) no. 8, pp. 1331-1342. http://geodesic.mathdoc.fr/item/DE_1987_23_8_a5/