Sufficient conditions for the property of being a basis in $L_p$ and for equiconvergence with a trigonometric series of spectral expansions
Differencialʹnye uravneniâ, Tome 23 (1987) no. 6, pp. 952-960.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1987_23_6_a3,
     author = {V. E. Volkov},
     title = {Sufficient conditions for the property of being a basis in $L_p$ and for equiconvergence with a trigonometric series of spectral expansions},
     journal = {Differencialʹnye uravneni\^a},
     pages = {952--960},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1987_23_6_a3/}
}
TY  - JOUR
AU  - V. E. Volkov
TI  - Sufficient conditions for the property of being a basis in $L_p$ and for equiconvergence with a trigonometric series of spectral expansions
JO  - Differencialʹnye uravneniâ
PY  - 1987
SP  - 952
EP  - 960
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1987_23_6_a3/
LA  - ru
ID  - DE_1987_23_6_a3
ER  - 
%0 Journal Article
%A V. E. Volkov
%T Sufficient conditions for the property of being a basis in $L_p$ and for equiconvergence with a trigonometric series of spectral expansions
%J Differencialʹnye uravneniâ
%D 1987
%P 952-960
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1987_23_6_a3/
%G ru
%F DE_1987_23_6_a3
V. E. Volkov. Sufficient conditions for the property of being a basis in $L_p$ and for equiconvergence with a trigonometric series of spectral expansions. Differencialʹnye uravneniâ, Tome 23 (1987) no. 6, pp. 952-960. http://geodesic.mathdoc.fr/item/DE_1987_23_6_a3/