An asymptotically stable integral $O$-set of nonlinear systems in the Lipschitz class for a scalar product
Differencialʹnye uravneniâ, Tome 22 (1986) no. 6, pp. 932-944.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1986_22_6_a2,
     author = {S. K. Norkin},
     title = {An asymptotically stable integral $O$-set of nonlinear systems in the {Lipschitz} class for a scalar product},
     journal = {Differencialʹnye uravneni\^a},
     pages = {932--944},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1986_22_6_a2/}
}
TY  - JOUR
AU  - S. K. Norkin
TI  - An asymptotically stable integral $O$-set of nonlinear systems in the Lipschitz class for a scalar product
JO  - Differencialʹnye uravneniâ
PY  - 1986
SP  - 932
EP  - 944
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1986_22_6_a2/
LA  - ru
ID  - DE_1986_22_6_a2
ER  - 
%0 Journal Article
%A S. K. Norkin
%T An asymptotically stable integral $O$-set of nonlinear systems in the Lipschitz class for a scalar product
%J Differencialʹnye uravneniâ
%D 1986
%P 932-944
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1986_22_6_a2/
%G ru
%F DE_1986_22_6_a2
S. K. Norkin. An asymptotically stable integral $O$-set of nonlinear systems in the Lipschitz class for a scalar product. Differencialʹnye uravneniâ, Tome 22 (1986) no. 6, pp. 932-944. http://geodesic.mathdoc.fr/item/DE_1986_22_6_a2/