The property of being an unconditional basis on a closed interval of systems of eigen- and associated functions of a quadratic pencil of nonselfadjoint differential operators
Differencialʹnye uravneniâ, Tome 22 (1986) no. 1, pp. 94-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1986_22_1_a11,
     author = {M. Rakhimov},
     title = {The property of being an unconditional basis on a closed interval of systems of eigen- and associated functions of a quadratic pencil of nonselfadjoint differential operators},
     journal = {Differencialʹnye uravneni\^a},
     pages = {94--103},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1986_22_1_a11/}
}
TY  - JOUR
AU  - M. Rakhimov
TI  - The property of being an unconditional basis on a closed interval of systems of eigen- and associated functions of a quadratic pencil of nonselfadjoint differential operators
JO  - Differencialʹnye uravneniâ
PY  - 1986
SP  - 94
EP  - 103
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1986_22_1_a11/
LA  - ru
ID  - DE_1986_22_1_a11
ER  - 
%0 Journal Article
%A M. Rakhimov
%T The property of being an unconditional basis on a closed interval of systems of eigen- and associated functions of a quadratic pencil of nonselfadjoint differential operators
%J Differencialʹnye uravneniâ
%D 1986
%P 94-103
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1986_22_1_a11/
%G ru
%F DE_1986_22_1_a11
M. Rakhimov. The property of being an unconditional basis on a closed interval of systems of eigen- and associated functions of a quadratic pencil of nonselfadjoint differential operators. Differencialʹnye uravneniâ, Tome 22 (1986) no. 1, pp. 94-103. http://geodesic.mathdoc.fr/item/DE_1986_22_1_a11/