Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1985_21_6_a9, author = {G. S. Rychkov}, title = {The maximum number of limit cycles of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the case of three singular points}, journal = {Differencialʹnye uravneni\^a}, pages = {991--997}, publisher = {mathdoc}, volume = {21}, number = {6}, year = {1985}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1985_21_6_a9/} }
TY - JOUR AU - G. S. Rychkov TI - The maximum number of limit cycles of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the case of three singular points JO - Differencialʹnye uravneniâ PY - 1985 SP - 991 EP - 997 VL - 21 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1985_21_6_a9/ LA - ru ID - DE_1985_21_6_a9 ER -
%0 Journal Article %A G. S. Rychkov %T The maximum number of limit cycles of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the case of three singular points %J Differencialʹnye uravneniâ %D 1985 %P 991-997 %V 21 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1985_21_6_a9/ %G ru %F DE_1985_21_6_a9
G. S. Rychkov. The maximum number of limit cycles of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the case of three singular points. Differencialʹnye uravneniâ, Tome 21 (1985) no. 6, pp. 991-997. http://geodesic.mathdoc.fr/item/DE_1985_21_6_a9/