The maximum number of limit cycles of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the case of three singular points
Differencialʹnye uravneniâ, Tome 21 (1985) no. 6, pp. 991-997
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1985_21_6_a9,
author = {G. S. Rychkov},
title = {The maximum number of limit cycles of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the case of three singular points},
journal = {Differencialʹnye uravneni\^a},
pages = {991--997},
year = {1985},
volume = {21},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1985_21_6_a9/}
}
TY - JOUR AU - G. S. Rychkov TI - The maximum number of limit cycles of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the case of three singular points JO - Differencialʹnye uravneniâ PY - 1985 SP - 991 EP - 997 VL - 21 IS - 6 UR - http://geodesic.mathdoc.fr/item/DE_1985_21_6_a9/ LA - ru ID - DE_1985_21_6_a9 ER -
G. S. Rychkov. The maximum number of limit cycles of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the case of three singular points. Differencialʹnye uravneniâ, Tome 21 (1985) no. 6, pp. 991-997. http://geodesic.mathdoc.fr/item/DE_1985_21_6_a9/