Localization principle for solutions of the Cauchy problem for parabolic systems in the class of generalized infinite-order functions
Differencialʹnye uravneniâ, Tome 21 (1985) no. 6, pp. 1077-1079
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1985_21_6_a22,
author = {V. V. Gorodestkii},
title = {Localization principle for solutions of the {Cauchy} problem for parabolic systems in the class of generalized infinite-order functions},
journal = {Differencialʹnye uravneni\^a},
pages = {1077--1079},
year = {1985},
volume = {21},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1985_21_6_a22/}
}
TY - JOUR AU - V. V. Gorodestkii TI - Localization principle for solutions of the Cauchy problem for parabolic systems in the class of generalized infinite-order functions JO - Differencialʹnye uravneniâ PY - 1985 SP - 1077 EP - 1079 VL - 21 IS - 6 UR - http://geodesic.mathdoc.fr/item/DE_1985_21_6_a22/ LA - ru ID - DE_1985_21_6_a22 ER -
%0 Journal Article %A V. V. Gorodestkii %T Localization principle for solutions of the Cauchy problem for parabolic systems in the class of generalized infinite-order functions %J Differencialʹnye uravneniâ %D 1985 %P 1077-1079 %V 21 %N 6 %U http://geodesic.mathdoc.fr/item/DE_1985_21_6_a22/ %G ru %F DE_1985_21_6_a22
V. V. Gorodestkii. Localization principle for solutions of the Cauchy problem for parabolic systems in the class of generalized infinite-order functions. Differencialʹnye uravneniâ, Tome 21 (1985) no. 6, pp. 1077-1079. http://geodesic.mathdoc.fr/item/DE_1985_21_6_a22/