A proof of the localization of unbounded solutions of the nonlinear parabolic equation $u_t=(u^\sigma u_x)_x+u^\beta$
Differencialʹnye uravneniâ, Tome 21 (1985) no. 1, pp. 15-23
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1985_21_1_a2,
author = {V. A. Galaktionov},
title = {A proof of the localization of unbounded solutions of the nonlinear parabolic equation $u_t=(u^\sigma u_x)_x+u^\beta$},
journal = {Differencialʹnye uravneni\^a},
pages = {15--23},
year = {1985},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1985_21_1_a2/}
}
TY - JOUR AU - V. A. Galaktionov TI - A proof of the localization of unbounded solutions of the nonlinear parabolic equation $u_t=(u^\sigma u_x)_x+u^\beta$ JO - Differencialʹnye uravneniâ PY - 1985 SP - 15 EP - 23 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/DE_1985_21_1_a2/ LA - ru ID - DE_1985_21_1_a2 ER -
V. A. Galaktionov. A proof of the localization of unbounded solutions of the nonlinear parabolic equation $u_t=(u^\sigma u_x)_x+u^\beta$. Differencialʹnye uravneniâ, Tome 21 (1985) no. 1, pp. 15-23. http://geodesic.mathdoc.fr/item/DE_1985_21_1_a2/