The order of convergence of difference schemes for weak solutions of the heat equation in an anisotropic inhomogeneous medium
Differencialʹnye uravneniâ, Tome 20 (1984) no. 7, pp. 1144-1151
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1984_20_7_a4,
author = {W. Weinelt and R. D. Lazarov and U. Streit},
title = {The order of convergence of difference schemes for weak solutions of the heat equation in an anisotropic inhomogeneous medium},
journal = {Differencialʹnye uravneni\^a},
pages = {1144--1151},
year = {1984},
volume = {20},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1984_20_7_a4/}
}
TY - JOUR AU - W. Weinelt AU - R. D. Lazarov AU - U. Streit TI - The order of convergence of difference schemes for weak solutions of the heat equation in an anisotropic inhomogeneous medium JO - Differencialʹnye uravneniâ PY - 1984 SP - 1144 EP - 1151 VL - 20 IS - 7 UR - http://geodesic.mathdoc.fr/item/DE_1984_20_7_a4/ LA - ru ID - DE_1984_20_7_a4 ER -
%0 Journal Article %A W. Weinelt %A R. D. Lazarov %A U. Streit %T The order of convergence of difference schemes for weak solutions of the heat equation in an anisotropic inhomogeneous medium %J Differencialʹnye uravneniâ %D 1984 %P 1144-1151 %V 20 %N 7 %U http://geodesic.mathdoc.fr/item/DE_1984_20_7_a4/ %G ru %F DE_1984_20_7_a4
W. Weinelt; R. D. Lazarov; U. Streit. The order of convergence of difference schemes for weak solutions of the heat equation in an anisotropic inhomogeneous medium. Differencialʹnye uravneniâ, Tome 20 (1984) no. 7, pp. 1144-1151. http://geodesic.mathdoc.fr/item/DE_1984_20_7_a4/