The relation between third-order systems without moving critical points and nonlinear partial differential equations
Differencialʹnye uravneniâ, Tome 20 (1984) no. 10, pp. 1806-1809
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1984_20_10_a19,
author = {N. S. Berezkina},
title = {The relation between third-order systems without moving critical points and nonlinear partial differential equations},
journal = {Differencialʹnye uravneni\^a},
pages = {1806--1809},
year = {1984},
volume = {20},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1984_20_10_a19/}
}
TY - JOUR AU - N. S. Berezkina TI - The relation between third-order systems without moving critical points and nonlinear partial differential equations JO - Differencialʹnye uravneniâ PY - 1984 SP - 1806 EP - 1809 VL - 20 IS - 10 UR - http://geodesic.mathdoc.fr/item/DE_1984_20_10_a19/ LA - ru ID - DE_1984_20_10_a19 ER -
%0 Journal Article %A N. S. Berezkina %T The relation between third-order systems without moving critical points and nonlinear partial differential equations %J Differencialʹnye uravneniâ %D 1984 %P 1806-1809 %V 20 %N 10 %U http://geodesic.mathdoc.fr/item/DE_1984_20_10_a19/ %G ru %F DE_1984_20_10_a19
N. S. Berezkina. The relation between third-order systems without moving critical points and nonlinear partial differential equations. Differencialʹnye uravneniâ, Tome 20 (1984) no. 10, pp. 1806-1809. http://geodesic.mathdoc.fr/item/DE_1984_20_10_a19/