The relation between third-order systems without moving critical points and nonlinear partial differential equations
Differencialʹnye uravneniâ, Tome 20 (1984) no. 10, pp. 1806-1809.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1984_20_10_a19,
     author = {N. S. Berezkina},
     title = {The relation between third-order systems without moving critical points and nonlinear partial differential equations},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1806--1809},
     publisher = {mathdoc},
     volume = {20},
     number = {10},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1984_20_10_a19/}
}
TY  - JOUR
AU  - N. S. Berezkina
TI  - The relation between third-order systems without moving critical points and nonlinear partial differential equations
JO  - Differencialʹnye uravneniâ
PY  - 1984
SP  - 1806
EP  - 1809
VL  - 20
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1984_20_10_a19/
LA  - ru
ID  - DE_1984_20_10_a19
ER  - 
%0 Journal Article
%A N. S. Berezkina
%T The relation between third-order systems without moving critical points and nonlinear partial differential equations
%J Differencialʹnye uravneniâ
%D 1984
%P 1806-1809
%V 20
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1984_20_10_a19/
%G ru
%F DE_1984_20_10_a19
N. S. Berezkina. The relation between third-order systems without moving critical points and nonlinear partial differential equations. Differencialʹnye uravneniâ, Tome 20 (1984) no. 10, pp. 1806-1809. http://geodesic.mathdoc.fr/item/DE_1984_20_10_a19/