Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1984_20_10_a10, author = {O. Vejvoda and M. Shtedry}, title = {Existence of classical periodic solutions of the wave equation. {The} relation of the number-theoretic character of the period and the geometric properties of solutions}, journal = {Differencialʹnye uravneni\^a}, pages = {1733--1739}, publisher = {mathdoc}, volume = {20}, number = {10}, year = {1984}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1984_20_10_a10/} }
TY - JOUR AU - O. Vejvoda AU - M. Shtedry TI - Existence of classical periodic solutions of the wave equation. The relation of the number-theoretic character of the period and the geometric properties of solutions JO - Differencialʹnye uravneniâ PY - 1984 SP - 1733 EP - 1739 VL - 20 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1984_20_10_a10/ LA - ru ID - DE_1984_20_10_a10 ER -
%0 Journal Article %A O. Vejvoda %A M. Shtedry %T Existence of classical periodic solutions of the wave equation. The relation of the number-theoretic character of the period and the geometric properties of solutions %J Differencialʹnye uravneniâ %D 1984 %P 1733-1739 %V 20 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1984_20_10_a10/ %G ru %F DE_1984_20_10_a10
O. Vejvoda; M. Shtedry. Existence of classical periodic solutions of the wave equation. The relation of the number-theoretic character of the period and the geometric properties of solutions. Differencialʹnye uravneniâ, Tome 20 (1984) no. 10, pp. 1733-1739. http://geodesic.mathdoc.fr/item/DE_1984_20_10_a10/