Existence of classical periodic solutions of the wave equation. The relation of the number-theoretic character of the period and the geometric properties of solutions
Differencialʹnye uravneniâ, Tome 20 (1984) no. 10, pp. 1733-1739
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1984_20_10_a10,
author = {O. Vejvoda and M. Shtedry},
title = {Existence of classical periodic solutions of the wave equation. {The} relation of the number-theoretic character of the period and the geometric properties of solutions},
journal = {Differencialʹnye uravneni\^a},
pages = {1733--1739},
year = {1984},
volume = {20},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1984_20_10_a10/}
}
TY - JOUR AU - O. Vejvoda AU - M. Shtedry TI - Existence of classical periodic solutions of the wave equation. The relation of the number-theoretic character of the period and the geometric properties of solutions JO - Differencialʹnye uravneniâ PY - 1984 SP - 1733 EP - 1739 VL - 20 IS - 10 UR - http://geodesic.mathdoc.fr/item/DE_1984_20_10_a10/ LA - ru ID - DE_1984_20_10_a10 ER -
%0 Journal Article %A O. Vejvoda %A M. Shtedry %T Existence of classical periodic solutions of the wave equation. The relation of the number-theoretic character of the period and the geometric properties of solutions %J Differencialʹnye uravneniâ %D 1984 %P 1733-1739 %V 20 %N 10 %U http://geodesic.mathdoc.fr/item/DE_1984_20_10_a10/ %G ru %F DE_1984_20_10_a10
O. Vejvoda; M. Shtedry. Existence of classical periodic solutions of the wave equation. The relation of the number-theoretic character of the period and the geometric properties of solutions. Differencialʹnye uravneniâ, Tome 20 (1984) no. 10, pp. 1733-1739. http://geodesic.mathdoc.fr/item/DE_1984_20_10_a10/